A Schur Method for Low-Rank Matrix Approximation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur method for low-rank matrix approximation

The usual way to compute a low-rank approximant of a matrix H is to take its truncated SVD. However, the SVD is computationally expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has d singular values larger than ε, we find all rank d approximants Ĥ such that H − Ĥ has 2-norm less than ε. The set o...

متن کامل

A Schur Method for Low-Rank Matrix Approximation

The usual way to compute a low-rank approximant of a matrix H is to take its singular value decomposition (SVD) and truncate it by setting the small singular values equal to 0. However, the SVD is computationally expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has d singular values larger than ε...

متن کامل

A Schur Method for Low-rank Matrix Approximation∗ Alle-jan Van Der Veen

The usual way to compute a low-rank approximant of a matrix H is to take its singular value decomposition (SVD) and truncate it by setting the small singular values equal to 0. However, the SVD is computationally expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has d singular values larger than ε...

متن کامل

Local Low-Rank Matrix Approximation

Matrix approximation is a common tool in recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is of low-rank. We propose a new matrix approximation model where we assume instead that the matrix is locally of low-rank, leading to a representation of the observed matrix as a weighted sum of low...

متن کامل

Low Rank Matrix Approximation for Geometry Filtering

Wepropose a robust, anisotropic normal estimationmethod for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local feature descriptor for each point and find similar, non-local neighbors that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 1996

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479893261340